Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Number sense is essential for early mathematical development but it is compromised in children with mathematical disabilities (MD). Here we investigate the impact of a personalized 4-week Integrated Number Sense (INS) tutoring program aimed at improving the connection between nonsymbolic (sets of objects) and symbolic (Arabic numerals) representations in children with MD. Utilizing neural pattern analysis, we found that INS tutoring not only improved cross-format mapping but also significantly boosted arithmetic fluency in children with MD. Critically, the tutoring normalized previously low levels of cross-format neural representations in these children to pre-tutoring levels observed in typically developing, especially in key brain regions associated with numerical cognition. Moreover, we identified distinct, ‘inverted U-shaped’ neurodevelopmental changes in the MD group, suggesting unique neural plasticity during mathematical skill development. Our findings highlight the effectiveness of targeted INS tutoring for remediating numerical deficits in MD, and offer a foundation for developing evidence-based educational interventions. Significance StatementFocusing on neural mechanisms, our study advances understanding of how numerical problem-solving can be enhanced in children with mathematical disabilities (MD). We evaluated an integrated number sense tutoring program designed to enhance connections between concrete (e.g. 2 dots) and symbolic (e.g. “2”) numerical representations. Remarkably, the tutoring program not only improved these children’s ability to process numbers similarly across formats but also enhanced their arithmetic skills, indicating transfer of learning to related domains. Importantly, tutoring normalized brain processing patterns in children with MD to resemble those of typically developing peers. These insights highlight the neural bases of successful interventions for MD, offering a foundation for developing targeted educational strategies that could markedly improve learning outcomes for children facing these challenges.more » « less
- 
            Abstract Number sense is fundamental to the development of numerical problem‐solving skills. In early childhood, children establish associations between non‐symbolic (e.g., a set of dots) and symbolic (e.g., Arabic numerals) representations of quantity. The developmental estrangement theory proposes that the relationship between non‐symbolic and symbolic representations of quantity evolves with age, with increased dissociation across development. Consistent with this theory, recent research suggests that cross‐format neural representational similarity (NRS) between non‐symbolic and symbolic quantities is correlated with arithmetic fluency in children but not in adolescents. However, it is not known if short‐term training (STT) can induce similar changes as long‐term development. In this study, children aged 7–10 years underwent a theoretically motivated 4‐week number sense training. Using multivariate neural pattern analysis, we investigated whether short‐term learning could modify the relation between cross‐format NRS and arithmetic skills. Our results revealed a significant correlation between cross‐format NRS and arithmetic fluency in distributed brain regions, including the parietal and prefrontal cortices, prior to training. However, this association was no longer observed after training, and multivariate predictive models confirmed these findings. Our findings provide evidence that intensive STT during early childhood can promote behavioral improvements and neural plasticity that resemble and recapitulate long‐term neurodevelopmental changes that occur from childhood to adolescence. More generally, our study contributes to our understanding of the malleability of number sense and highlights the potential for targeted interventions to shape neurodevelopmental trajectories in early childhood. Research HighlightsWe tested the hypothesis that short‐term number sense training induces the dissociation of symbolic numbers from non‐symbolic representations of quantity in children.We leveraged a theoretically motivated intervention and multivariate pattern analysis to determine training‐induced neurocognitive changes in the relation between number sense and arithmetic problem‐solving skills.Neural representational similarity between non‐symbolic and symbolic quantity representations was correlated with arithmetic skills before training but not after training.Short‐term training recapitulates long‐term neurodevelopmental changes associated with numerical problem‐solving from childhood to adolescence.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
